Cloning, nucleotide sequence, and expression in Escherichia coli of levansucrase genes from the plant pathogens Pseudomonas syringae pv. glycinea and P. syringae pv. phaseolicola.
نویسندگان
چکیده
Plant-pathogenic bacteria produce various extracellular polysaccharides (EPSs) which may function as virulence factors in diseases caused by these bacteria. The EPS levan is synthesized by the extracellular enzyme levansucrase in Pseudomonas syringae, Erwinia amylovora, and other bacterial species. The lsc genes encoding levansucrase from P. syringae pv. glycinea PG4180 and P. syringae pv. phaseolicola NCPPB 1321 were cloned, and their nucleotide sequences were determined. Heterologous expression of the lsc gene in Escherichia coli was found in four and two genomic library clones of strains PG4180 and NCPPB 1321, respectively. A 3. 0-kb PstI fragment common to all six clones conferred levan synthesis on E. coli when further subcloned. Nucleotide sequence analysis revealed a 1,248-bp open reading frame (ORF) derived from PG4180 and a 1,296-bp ORF derived from NCPPB 1321, which were both designated lsc. Both ORFs showed high homology to the E. amylovora and Zymomonas mobilis lsc genes at the nucleic acid and deduced amino acid sequence levels. Levansucrase was not secreted into the supernatant but was located in the periplasmic fraction of E. coli harboring the lsc gene. Expression of lsc was found to be dependent on the vector-based Plac promoter, indicating that the native promoter of lsc was not functional in E. coli. Insertion of an antibiotic resistance cassette in the lsc gene abolished levan synthesis in E. coli. A PCR screening with primers derived from lsc of P. syringae pv. glycinea PG4180 allowed the detection of this gene in a number of related bacteria.
منابع مشابه
Ethylene production by strains of the plant-pathogenic bacterium Pseudomonas syringae depends upon the presence of indigenous plasmids carrying homologous genes for the ethylene-forming enzyme.
The molecular characteristics of the ethylene-forming enzymes of strains of Pseudomonas syringae were tested. The ethylene-producing activities of the nine strains as measured in vivo and in vitro were similar, except for that of P. syringae pv. mori M5. A polyclonal antibody and a DNA probe for the ethylene-forming enzyme from P. syringae pv. phaseolicola PK2 were prepared to investigate homol...
متن کاملYersiniabactin production by Pseudomonas syringae and Escherichia coli, and description of a second yersiniabactin locus evolutionary group.
The siderophore and virulence factor yersiniabactin is produced by Pseudomonas syringae. Yersiniabactin was originally detected by high-pressure liquid chromatography (HPLC); commonly used PCR tests proved ineffective. Yersiniabactin production in P. syringae correlated with the possession of irp1 located in a predicted yersiniabactin locus. Three similarly divergent yersiniabactin locus groups...
متن کاملPseudomonas syringae pv. phaseolicola can be separated into two genetic lineages distinguished by the possession of the phaseolotoxin biosynthetic cluster.
The bean (Phaseolus spp.) plant pathogen Pseudomonas syringae pv. phaseolicola is characterized by the ability to produce phaseolotoxin (Tox(+)). We recently reported that the majority of the Spanish P. syringae pv. phaseolicola population is unable to synthesize this toxin (Tox(-)). These Tox(-) isolates appear to lack the entire DNA region for the biosynthesis of phaseolotoxin (argK-tox gene ...
متن کاملThe Stealth Episome: Suppression of Gene Expression on the Excised Genomic Island PPHGI-1 from Pseudomonas syringae pv. phaseolicola
Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in the common bean, Phaseolus vulgaris. P. syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene avrPphB (syn. hopAR1), which resides on PPHGI-1, a 106 kb genomic island. Loss of PPHGI-1 from P. syringae pv. phaseolicola 1302A following exposure to the hypersensitive resistance response (HR) leads t...
متن کاملCloning and expression of genes required for coronamic Acid (2-ethyl-1-aminocyclopropane 1-carboxylic Acid), an intermediate in the biosynthesis of the phytotoxin coronatine.
Coronamic acid (CMA; 2-ethyl-1-aminocyclopropane 1-carboxylic acid) is an intermediate in the biosynthesis of coronatine (COR), a chlorosis-inducing phytotoxin produced by Pseudomonas syringae pv. glycinea PG4180. Tn5 mutagenesis and substrate feeding studies were previously used to characterize regions of the COR biosynthetic gene cluster required for synthesis of coronafacic acid and CMA, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 64 9 شماره
صفحات -
تاریخ انتشار 1998